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Abstract Fuzzy logic has been used as a tool in struc-
ture—camphoraceous odor relationships. The data base
studied included 99 molecules. The rules used to dis-
criminate between camphor and non camphor molecules
lead to 77% correct discrimination. Such rules account for
the shape and the size of the molecule. Their adjustment
by means of genetic algorithms led to 84% correct dis-
crimination between camphor and non-camphor mole-
cules.

Keywords Fuzzy logic - Structure—activity relationship -
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Introduction

Odor is a human sense for which no complete theory
exists. This is due to the fact that the mechanisms of this
activity are complex. Because of this lack of a final ol-
faction theory, many structure—odor relationships have
been established, i.e. for musk, [1] sandalwood, [2] bitter
almond [3] and camphor. [4] Efficient structure—odor
relationships lead to models that can be used to predict the
odor for new molecules. The variable descriptors identi-
fied to be pertinent in the models generally allow the
formulation of efficient rules that can help understand
olfaction mechanisms.
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The previous published papers on olfactory stimuli
show that some odors depend closely on the stereo-
chemistry of the chemical groups involved in the mech-
anisms, as for decalin structures with an amber odor, in-
dan and tetralin series with a musk odor or campholenic
structures with sandalwood character. In such examples,
the stereochemistry is important around the groups in-
volved in specific interactions such as hydrogen bonds.
However, when hydrocarbon groups are involved in the
interactions between receptor site and stimuli, the inter-
action energy depends on the size of the hydrocarbon
group.

The previous studies [2, 4] of sandalwood and cam-
phoraceous structure—odor relationships showed that the
presence of odor depends on the presence of a hydro-
carbon group, a hydroxyl group and a distance between
them. The optimal value of the distance lies between 6.5
and 7.1 A.

For a large set of odors, the activity is not well defined
in relation to the chemical structure. This is the case, for
example, with camphor and woody odors.

Therefore, the best approach to describe both the hy-
drocarbon group and a variable descriptor such as that
above should be fuzzy. In addition we must consider a
fuzzy description of odor. Such an approach was recently
used by Chrétien et al. [5] for molecular-descriptor se-
lection relative to three odors. However, their example
was limited to 114 molecules.

Fuzzy concepts introduced by Zadeh [6] provide in-
teresting alternative solutions to the classification prob-
lems within the context of imprecise categories, in which
olfaction can be included. In fact, fuzzy classification
represents the boundaries between neighboring classes as
continuous, assigning to compounds a degree of mem-
bership of each class. It has been widely used in the field
of process control, where the idea is to convert human
expert knowledge into fuzzy rules, [7] and it should be
able to extract relevant structure—activity relationships
from a database without a priori knowledge. A fuzzy set is
fully defined by its membership functions. For most ap-
plications, the sets to be defined are easily identifiable.
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However, for other applications they have to be deter-
mined by knowledge acquisition from an expert or group
of experts. Once the fuzzy sets have been established, one
must consider their associated member functions. How
best to determine the membership function is the first
question to be tackled.

The approach adopted for acquiring the shape of any
particular membership function often depends on the
application. For most fuzzy logic control problems, the
membership functions are assumed to be linear, triangular
and usually trapezoidal in shape. So, typically the sets that
describe various factors of importance in the application
and the issues to be determined are the parameters that
define the trapezoids. These parameters are elicited di-
rectly from the expert.

In addition to the use of the fuzzy approach, we used
genetic algorithm (GA) methods, which are basically
random-search techniques applied to many different
problems such as function optimization, routing prob-
lems, design of neural networks, system identification,
digital signal processing, computer vision, control and
machine learning. [8] GAs have been used for the ad-
justment of membership function parameters, [9, 10, 11]
as they offer a convenient way to model membership
functions. However, there is no requirement for the
membership function to be trapezoidal in shape.

In this paper we present a classification method using
fuzzy rules of 99 camphoraceous molecules. GA was used
to adjust the parameters that define the membership
functions in the fuzzy rules, in order to minimize the error
of classification.

Materials and methods
Data set and molecular description

The set of molecules chosen to illustrate our approach is taken from
the work of Schnabel et al. [12] The molecules are described by
means of physicochemical descriptors previously considered as
pertinent for the determination of camphor odor. [13, 14] Some of
these descriptors were obtained by the MMP molecular mechanics
method. [15]

In order to take into account the shape of each molecule from its
chemical structure, the molecular maximum length was oriented
along the x axis and the molecular maximum width along the y axis.
The following geometrical parameters were measured on the basis
on the most stable conformation:

— R: molecular length, measured as the distance along the screen x
axis between the extreme left and the extreme right atoms plus
their van der Waals radii.

— r: molecular width is the distance along the screen y axis be-
tween the atoms at the top and the bottom plus their van der
Waals radii.

— R/r: accounts for the shape of the molecule.

— St accounts for the surface of the molecule.

Variables generated for 4-methyl-hexan-3-ol chosen as an ex-
ample are given in Table 1. This molecule with camphoraceous
character belongs to the class of camphor.

Table 1 Description and class of the 4-methyl-hexan-3-ol
RIr S C
6.4 11.64

R r
1.63

10.42 Camph.

Fuzzy rules identification

The fuzzy rule (R;) set characterizing the camphor odor is given
below:

Ry:If the molecule is spherical and has a medium size then its odor
is very camphorated.

R5: If the molecule is spherical and has a small size then its odor is
not camphorated.

Rj: If the molecule is spherical and has a large size then its odor is
not camphorated.

R4: If the molecule is not spherical then its odor is not camphorated.

For the sample studied, the shape of the molecule is defined by
the variable R/r, if this ratio is close to 1, then the molecule has a
shape close to spherical. The corresponding fuzzy variable of R/r
is represented with membership functions denoted by: finericar and
fnol spherical-

The size of the molecule is expressed by the surface descriptor
S. This descriptor has the fuzzy values: small, medium and large,
with membership functions denoted by: fomais fmedium and fiarge-
Limit values for such functions are identified on the basis of mo-
lecular descriptor calculated and discussions with experts (P=1.60,
P,=1.90, P5.7.6, P,_8.6, Ps_10.60, Ps_11.60) (Fig. 1).

The camphoraceous Schnabel’s scores were transformed into
two binary variables, respectively 7C and NC. TC corresponds to
molecules having 3, 4 and 5 Schnabel’s scores and NC corresponds
to molecules having 0, 1 and 2 Schnabel’s scores. T7C and NC are
considered as fuzzy subsets with membership functions denoted by
frc and fyc, respectively (Fig. 2). As an example, the molecule
number 6, with a Schnabel’s score close to 2, is described by
Jrc(2)=0.33 and frc(2)=0.67.

Classification method of the database examples using fuzzy rules

During the classification phase, a molecule can be classified di-
rectly using a fuzzy classification module (FCM), which uses fuzzy
expert rules.

We have two fuzzy knowledge rules sets: FRyc={R;} which
characterizes the odor 7C and FRyc={R,, R3, R4} which charac-
terizes the odor NC.

To illustrate this concept, consider the molecule m, described
by:

my = (A; = a;)and(A; = a yand(C, = Schnabel’s score)

A; € {spherical, size}
a! € {spherical, not spherical }
@ € {small, medium, large}
Schnabel’s score € {0, 1, 2, 3, 4, 5}

We define the global degree of TC as:

A; € {spherical, size}

a! € {spherical, not spherical }

@ € {small, medium, large}
Schnabel’s score € {0, 1, 2, 3, 4, 5}
with Ry (m,) the degree of TC inferred by using the rule R,€FR7c,
we use the Mamdani inference where the conjunction “and” is
expressed with the min operator, and the disjunction “or” is ex-
pressed with the max operator. [16]
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Fig. 1 Membership function for the chosen variables

Py

For example (Fig. 3):
If : my = (R/r =1.70) and (S = 8)and (frc(Cx) = 0.67)
FRrc = {Ry}
Ry (m,) = min (fypherical (0.70), finedium (8)) = min (0.75,0.33) = 0.33
a; = Ry(m,) =0.33
We define also the global degree NC as:

Br=  Max (Ri(my))

with R;(m,) the degree of NC inferred by using the rules R EFRyc.
For example (Fig. 4):

If : my = (R/r = 1.70) and (S = 8) and {fyc(C,) = 0.33)

FRyc = {R2, R3, R4}

Rz(mx) = min spherical(0~70)7fsmall(8)) = min (075,045) = 045

R3 (mx) = min Spherical(0'70 7flarge(8)) = min (0.75, O) =0

R4(mx) :fnot spherical(0~55) =0.55

B, = max (Ry(my), R3(my), Rs(m,)) = max (0.45,0,0.55) = 0.55

The aggregation of the global degrees and the membership

degree gives a degree of strong odor presence DegTC and a degree
of odor absence DegNC defined by:

DegTC = T(a, frc(Cy))
DegNC = T(o, fuc(Cy))

T: aggregation operator that combines several information
sources [17]C,: the m, molecule class (Schnabel’s score)

Ps

Fuzzy description

Jrc

.
»

5 Schnabel s
score

Fig. 2 Membership functions for odor activity

Example: The degrees DegTC and DegNC of m, molecule with
T as the max operator:

DegTC(m,) = max (e, frc(m,)) = max (0.33,0.67) = 0.67
DegNC(m,) = max (B, fnc(Cy)) = max (0.55,0.33) = 0.55

In this study we used the following three aggregation operators:
Zadeh, Lukasiewicz and Ordered Weighted Averaging (OWA),
wel0,1] [18] (Table 2).

Adjustment of parameters of membership functions
using genetic algorithms

A genetic algorithm was used to adjust the variable descriptors
using database examples in order to have a minimal error for the
classification. The GA used has the following specificities:
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Fig. 3 Calculation of R;(mx)
for m, molecule

ax=R,(m,)

A
S spherical
1 ________
I
I
1 ; » #
1 170 190 gy 8 86 106 116 S I 2 3 4 Schnabel’s
Fig. 4 Calculation of R, (m,), J spherial
R; (m,) and R, (m,) for m, 1A
molecule K ______
|
| > » »
! 170190 wr 8 86 s L2 34 Schnabel s
score
1“ f spherical Slarge Rs (my)
i R e
| .
ﬁl\ . : ‘
! 170 1.90 L 8 106 116 § 1 2 3 4 rschnabels
score
1 170 1.90 Rir 2 34 Schnabel s
score
Table 2 Aggregation operators
to calculate DegTC and DegNC r DegTC DegNC
Zadeh max(a, frc(Cy)) max(By, fnc(Cy))
Lukasiewicz ~ max(a,+frc(Cy)—1, 0) max(B+nc(Co-1, 0)
OWA min(@y, fro(Co)w+max(@y, fre(C(1-w)  min(By, fvc(CoIw+max(By, fuc(CH(1-w)

1. (p)i=1.6 the membership function parameters of the various
variables used in fuzzy expert rules.

2. For each parameter family and each molecule m; belonging to
database, the FCM generates two degrees DegTCi and DegNCi.

3. The purpose is to find an adequacy between a given DegTCi and
frc(C;) and on another DegNCi and fyc (C;) for all molecules in
the database, C; is the class of m;. This is evaluated by:

Ery; = max (|DegTC, —frc(C;)l, |DegNC, —fnc(Ci)|)

Thus, the problem consists in finding the parameters (pj)j=; ¢ Which
minimize:

Eryi = max (|DegTC, —frc(Ci)|, [DegNC, —fnc(Ci)|)
The GA procedure developed unfolds in the following steps:

Step 1: generation of the initial population (limits P; to P6)
Step 2: generation of database set (set of studied camphoraceous
molecules)

Step 3: evaluation of the error (objective function) using initial
set of P, to Pg

Step 4: generation of a new set of P, to Pg values and calcu-
lation of the error

Step 5: stop if the error becomes constant, else go to step 3

Results and discussion

We use the FCM method to predict the class of all 99
molecules using the Zadeh operator. For each molecule,
the method generates two degrees of odor response to be
determined within O to 1. The comparison between pre-
dicted and experimental values for all molecules tested is
reported in Table 3. The classification method leads to
satisfactory results (77%), as seen in this table, with a
prediction error:

Error = 23.23 [ Error = Z (Ermi)

The classification score obtained using the FCM
method only may be improved. That is, a GA was used to
adjust membership functions in the fuzzy expert rules
used initially. For the shape variable (input 1), it was
assumed that there are two different membership func-
tions “spherical” and “not spherical”, and it is assumed
that one of them is triangular. For the size variable (input
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Compound Schnabel’s score Fuzzy description Predicted score Er,,;
TC NC DegTC DegNC

1 0 0.00 1.00 0.00 1.00 0.00

2 0 0.00 1.00 0.00 1.00 0.00

3 0 0.00 1.00 0.00 1.00 0.00

4 0 0.00 1.00 0.00 0.99 0.02

5 3 1.00 0.00 0.50 0.48 0.50

6 1 0.33 0.67 0.29 0.71 0.04

7 1 0.33 0.67 0.47 0.53 0.14

8 1 0.33 0.67 0.47 0.53 0.14

9 4 1.00 0.00 0.94 0.06 0.06
10 1 0.33 0.67 0.17 0.83 0.17
11 0 0.00 1.00 0.25 0.75 0.25
12 0 0.00 1.00 0.23 0.77 0.23
13 1 0.33 0.67 0.40 0.60 0.06
14 4 1.00 0.00 0.91 0.09 0.09
15 4 1.00 0.00 0.86 0.14 0.14
16 0 0.00 1.00 0.32 0.68 0.32
17 3 1.00 0.00 0.86 0.14 0.14
18 0 0.00 1.00 0.00 1.00 0.00
19 0 0.00 1.00 0.00 1.00 0.00
20 1 0.33 0.67 0.17 0.83 0.17
21 4 1.00 0.00 0.50 0.50 0.50
22 0 0.00 1.00 0.00 1.00 0.00
23 0 0.00 1.00 0.00 1.00 0.00
24 4 1.00 0.00 0.50 0.50 0.50
25 0 0.00 1.00 0.00 0.75 0.25
26 0 0.00 1.00 0.00 1.00 0.00
27 0 0.00 1.00 0.00 0.50 0.50
28 0 0.00 1.00 0.00 0.50 0.50
29 0 0.00 1.00 0.00 0.50 0.50
30 0 0.00 1.00 0.00 1.00 0.00
31 2 0.67 0.33 0.33 0.65 0.33
32 4 1.00 0.00 0.55 0.43 0.45
33 1 0.33 0.67 0.44 0.56 0.11
34 5 1.00 0.00 0.89 0.11 0.11
35 4 1.00 0.00 0.89 0.11 0.11
36 2 0.67 0.33 0.52 0.48 0.14
37 4 1.00 0.00 0.80 0.20 0.20
38 4 1.00 0.00 0.81 0.19 0.19
39 4 1.00 0.00 1.00 0.00 0.00
40 5 1.00 0.00 0.94 0.06 0.06
41 5 1.00 0.00 0.94 0.06 0.06
42 0 0.00 1.00 0.00 1.00 0.00
43 0 0.00 1.00 0.00 1.00 0.00
44 5 1.00 0.00 0.50 0.50 0.50
45 0 0.00 1.00 0.00 1.00 0.00
46 3 1.00 0.00 0.50 0.50 0.50
47 4 1.00 0.00 0.50 0.50 0.50
48 3 1.00 0.00 0.50 0.50 0.50
49 3 1.00 0.00 0.50 0.50 0.50
50 0 0.00 1.00 0.00 1.00 0.00
51 0 0.00 1.00 0.00 0.87 0.13
52 0 0.00 1.00 0.00 1.00 0.00
53 4 1.00 0.00 0.50 0.19 0.50
54 0 0.00 1.00 0.00 0.74 0.26
55 4 1.00 0.00 0.50 0.50 0.50
56 0 0.00 1.00 0.00 1.00 0.00
57 0 0.00 1.00 0.00 1.00 0.00
58 0 0.00 1.00 0.00 1.00 0.00
59 0 0.00 1.00 0.00 0.50 0.50
60 4 1.00 0.00 0.78 0.22 0.22
61 4 1.00 0.00 0.72 0.28 0.28
62 4 1.00 0.00 0.80 0.20 0.20
63 5 1.00 0.00 0.80 0.20 0.20
64 0 0.00 1.00 0.00 1.00 0.00
65 4 1.00 0.00 0.50 0.50 0.50
66 4 1.00 0.00 0.50 0.50 0.50
67 4 1.00 0.00 0.50 0.50 0.50
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Table 3 (continued)

Compound Schnabel’s score Fuzzy description Predicted score Er,,;
TC NC DegTC DegNC
68 4 1.00 0.00 0.50 0.50 0.50
69 4 1.00 0.00 0.50 0.50 0.50
70 4 1.00 0.00 0.50 0.50 0.50
71 4 1.00 0.00 0.50 0.50 0.50
72 4 1.00 0.00 0.50 0.50 0.50
73 2 0.67 0.33 0.33 0.67 0.33
74 3 1.00 0.00 0.50 0.50 0.50
75 0 0.00 1.00 0.00 0.88 0.12
76 4 1.00 0.00 0.50 0.50 0.50
77 1 0.33 0.67 0.17 0.83 0.17
78 1 0.33 0.67 0.17 0.83 0.17
79 4 1.00 0.00 0.50 0.50 0.50
80 4 1.00 0.00 0.50 0.21 0.50
81 4 1.00 0.00 0.50 0.21 0.50
82 4 1.00 0.00 0.50 0.50 0.50
83 4 1.00 0.00 0.50 0.50 0.50
84 4 1.00 0.00 0.50 0.23 0.50
85 4 1.00 0.00 0.50 0.13 0.50
86 0 0.00 1.00 0.00 1.00 0.00
87 0 0.00 1.00 0.00 1.00 0.00
88 0 0.00 1.00 0.00 1.00 0.00
89 0 0.00 1.00 0.00 0.50 0.50
90 0 0.00 1.00 0.00 1.00 0.00
91 0 0.00 1.00 0.00 1.00 0.00
92 4 1.00 0.00 0.50 0.50 0.50
93 4 1.00 0.00 0.50 0.50 0.50
94 1 0.33 0.67 0.17 0.71 0.17
95 0 0.00 1.00 0.00 1.00 0.00
96 0 0.00 1.00 0.00 1.00 0.00
97 0 0.00 1.00 0.00 1.00 0.00
98 0 0.00 1.00 0.00 1.00 0.00
99 0 0.00 1.00 0.00 1.00 0.00
Table 4 Error and parameters
for each operator Operator Error P, P, Ps P, Ps P w
Zadeh 21.13 1.22 1.78 6.36 8.17 10.15 12.35 -
Lukas 25.75 1.17 1.85 6.53 8.15 10.96 12.05 -
OWA 14.64 1.09 2.25 6.12 9.18 9.86 11.30 0.48
2), it was adopted that there are three different member- 25
ship functions “small”, “medium” and “large”, and it is
assumed that one of them is trapezoidal. The ranges of 2 Evolution of E
input 1 variables P, and P, are 0-1.75 and 1.75-4 re- volution o Error
spectively, and the ranges of input 2 variables P3, P4, Ps
and Pg are 0-8.1, 8.1-9.6, 9.6-11.1 and 11.1-13 respec- o 15 1
tively. The sum of errors to be optimized by the GA is E
done using various aggregation operators to compute =
DegTC; and DegNC,. 10
In addition, the results depend on the choice of the GA
parameters (crossover probability, mutation probability, 5
population size, and number of generations). We tested
several parameter values. The best values are: 20 for
population size, 0.8 for crossover probability, 0.01 for 0 ' ' '
mutation probability and 30 for the number of genera- 0 20 40 60
tions. The results of the computation are given in Table 4. Generations

In this table, we give the minimal error and optimal pa-
rameters Pi,..,P¢ of the membership functions using
Zadeh, Lukasiewicz and OWA operators. The application
of the OWA operator leads the minimal error, with the
good parameters, with the weight w=0.48.

Fig. 5 Evolution error using GA



Table 5 Statistical values defining the robustness of the FCM op-
timized model

Test set Validation ratio (%)
N 79.8
S, 85.6
S;3 82.5
S4 87.3
Mean 83.8

The evolution of the error is shown in Fig. 5 with the
OWA operator in order to calculate this error. GA was
trained on all 99 molecules of the data set. The optimized
parameters using the GA method were used to classify the
99 molecules of the data set, using the cross-validation
method. As a cross-validation procedure, we choose
randomly four subsets with 24 or 25 molecules for each
and we tested it using the optimized parameters. The
classification ability of each is given in Table 5. The
statistical criteria concerning the test set reported in Ta-
ble 5 show that the average value of prediction efficiency
is close to 84%. This demonstrates that the model is rel-
atively robust.

As a conclusion, this paper presents a prediction
method, combining fuzzy logic and GA, of the camphor
odor. In addition to its classification efficiency, this
method allows the chemist to localize the eventual opti-
mal parameters responsible for a given odor, as shown in
this paper, or an activity in general. Our goal in the paper
is to find and to test this new tool for olfaction modeling.
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